5,591 research outputs found

    Conductivity anisotropy in the antiferromagnetic state of iron pnictides

    Full text link
    Recent experiments on iron pnictides have uncovered a large in-plane resistivity anisotropy with a surprising result: the system conducts better in the antiferromagnetic x direction than in the ferromagnetic y direction. We address this problem by calculating the ratio of the Drude weight along the x and y directions, Dx/Dy, for the mean-field Q=(\pi,0) magnetic phase diagram of a five-band model for the undoped pnictides. We find that Dx/Dy ranges between 0.3 < D_x/D_y < 1.4 for different interaction parameters. Large values of orbital ordering favor an anisotropy opposite to the one found experimentally. On the other hand D_x/D_y is strongly dependent on the topology and morfology of the reconstructed Fermi surface. Our results points against orbital ordering as the origin of the observed conductivity anisotropy, which may be ascribed to the anisotropy of the Fermi velocity.Comment: 4 pages, 3 pdf figures. Fig 1(b) changed, one equation corrected, minor changes in the text, references update

    Orbital differentiation and the role of orbital ordering in the magnetic state of Fe superconductors

    Full text link
    We analyze the metallic (pi,0) antiferromagnetic state of a five-orbital model for iron superconductors. We find that with increasing interactions the system does not evolve trivially from the pure itinerant to the pure localized regime. Instead we find a region with a strong orbital differentiation between xy and yz, which are half-filled gapped states at the Fermi level, and itinerant zx, 3z^2-r^2 and x^2-y^2. We argue that orbital ordering between yz and zx orbitals arises as a consequence of the interplay of the exchange energy in the antiferromagnetic x direction and the kinetic energy gained by the itinerant orbitals along the ferromagnetic y direction with an overall dominance of the kinetic energy gain. We indicate that iron superconductors are close to the boundary between the itinerant and the orbital differentiated regimes and that it could be possible to cross this boundary with doping.Comment: 6 pages, including 7 figures. As accepted in Phys. Rev.

    The nature of correlations in the insulating states of twisted bilayer graphene

    Full text link
    The recently observed superconductivity in twisted bilayer graphene emerges from insulating states believed to arise from electronic correlations. While there have been many proposals to explain the insulating behaviour, the commensurability at which these states appear suggests that they are Mott insulators. Here we focus on the insulating states with ±2\pm 2 electrons or holes with respect to the charge neutrality point. We show that the theoretical expectations for the Mott insulating states are not compatible with the experimentally observed dependence on temperature and magnetic field if, as frequently assumed, only the correlations between electrons on the same site are included. We argue that the inclusion of non-local (inter-site) correlations in the treatment of the Hubbard model can bring the predictions for the magnetic and temperature dependencies of the Mott transition to an agreement with experiments and have consequences for the critical interactions, the size of the gap, and possible pseudogap physics. The importance of the inter-site correlations to explain the experimental observations indicates that the observed insulating gap is not the one between the Hubbard bands and that antiferromagnetic-like correlations play a key role in the Mott transition.Comment: 8 pages (including appendix), 5 figure

    Slow light in molecular aggregates nanofilms

    Get PDF
    We study slow light performance of molecular aggregates arranged in nanofilms by means of coherent population oscillations (CPO). The molecular cooperative behavior inside the aggregate enhances the delay of input signals in the GHz range in comparison with other CPO-based devices. Moreover, the problem of residual absorption present in CPO processes, is removed. We also propose an optical switch between different delays by exploiting the optical bistability of these aggregates.Comment: 4 pages, 4 figure

    Electron gas at the interface between two antiferromagnetic insulating manganites

    Full text link
    We study theoretically the magnetic and electric properties of the interface between two antiferromagnetic and insulating manganites: La0.5Ca0.5MnO3, a strong correlated insulator, and CaMnO3, a band-insulator. We find that a ferromagnetic and metallic electron gas is formed at the interface between the two layers. We confirm the metallic character of the interface by calculating the in-plane conductance. The possibility of increasing the electron gas density by selective doping is also discussed.Comment: 6 pages, including 9 figure

    Re-entrant ferromagnetism in a generic class of diluted magnetic semiconductors

    Full text link
    Considering a general situation where a semiconductor is doped by magnetic impurities leading to a carrier-induced ferromagnetic exchange coupling between the impurity moments, we show theoretically the possible generic existence of three ferromagnetic transition temperatures, T_1 > T_2 > T_3, with two distinct ferromagnetic regimes existing for T_1 > T > T_2 and T < T_3. Such an intriguing re-entrant ferromagnetism, with a paramagnetic phase (T_2 > T > T_3) between two ferromagnetic phases, arises from a subtle competition between indirect exchange induced by thermally activated carriers in an otherwise empty conduction band versus the exchange coupling existing in the impurity band due to the bound carriers themselves. We comment on the possibility of observing such a re-entrance phenomenon in diluted magnetic semiconductors and magnetic oxides.Comment: 4 pages, 3 figure

    Nonleptonic two-body B-decays including axial-vector mesons in the final state

    Full text link
    We present a systematic study of exclusive charmless nonleptonic two-body B decays including axial-vector mesons in the final state. We calculate branching ratios of B\to PA, VA and AA decays, where A, V and P denote an axial-vector, a vector and a pseudoscalar meson, respectively. We assume naive factorization hypothesis and use the improved version of the nonrelativistic ISGW quark model for form factors in B\to A transitions. We include contributions that arise from the effective \Delta B=1 weak Hamiltonian H_{eff}. The respective factorized amplitude of these decays are explicitly showed and their penguin contributions are classified. We find that decays B^-to a_1^0\pi^-,\barB^0\to a_1^{\pm}\pi^{\mp}, B^-\to a_1^-\bar K^0, \bar B^0\to a_1^+K^-, \bar B^0\to f_1\bar K^0, B^-\to f_1K^-, B^-\to K_1^-(1400)\etap, B^-\to b_1^-\bar K^{0}, and \bar B^0\to b_1^+\pi^-(K^-) have branching ratios of the order of 10^{-5}. We also study the dependence of branching ratios for B \to K_1P(V,A) decays (K_1=K_1(1270),K_1(1400)) with respect to the mixing angle between K_A and K_B.Comment: 28 pages, 2 tables and one reference added, notation changed in appendices, some numerical results and abstract correcte

    Effect of strain on the orbital and magnetic ordering of manganite thin films and their interface with an insulator

    Full text link
    We study the effect of uniform uniaxial strain on the ground state electronic configuration of a thin film manganite. Our model Hamiltonian includes the double-exchange, the Jahn-Teller electron-lattice coupling, and the antiferromagnetic superexchange. The strain arises due to the lattice mismatch between an insulating substrate and a manganite which produces a tetragonal distortion. This is included in the model via a modification of the hopping amplitude and the introduction of an energy splitting between the Mn e_g levels. We analyze the bulk properties of half-doped manganites and the electronic reconstruction at the interface between a ferromagnetic and metallic manganite and the insulating substrate. The strain drives an orbital selection modifying the electronic properties and the magnetic ordering of manganites and their interfaces.Comment: 8 pages, 8 figure

    Magnetic field-assisted manipulation and entanglement of Si spin qubits

    Full text link
    Architectures of donor-electron based qubits in silicon near an oxide interface are considered theoretically. We find that the precondition for reliable logic and read-out operations, namely the individual identification of each donor-bound electron near the interface, may be accomplished by fine-tuning electric and magnetic fields, both applied perpendicularly to the interface. We argue that such magnetic fields may also be valuable in controlling two-qubit entanglement via donor electron pairs near the interface.Comment: 4 pages, 4 figures. 1 ref and 1 footnote adde
    corecore